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Abstract

We propose a herd-level sample-size formula based on a common adjustment for prevalence

estimates when diagnostic tests are imperfect. The formula depends on estimates of herd-level

sensitivity and specificity. With Monte Carlo simulations, we explored the effects of different

intracluster correlations on herd-level sensitivity and specificity. At low prevalence (e.g. 1% of

animals infected), herd-level sensitivity increased with increasing intracluster correlation and

many herds were classified as positive based only on false-positive test results. Herd-level

sensitivity was less affected at higher prevalence (e.g. 20% of animals infected). A real-life

example was developed for estimating ovine progressive pneumonia prevalence in sheep. The

approach allows researchers to balance the number of herds and the total number of animals

sampled by manipulating herd-level test characteristics (such as the number of animals sampled

within a herd).
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1. Introduction

Surveys of infection prevalence often are intended to substantiate claims of infection

freedom at a regional or national level. A two-stage sampling approach has been proposed

for such a purpose (Garner et al., 1997; Cameron and Baldock, 1998b; Audige and Beckett,

1999; Stärk et al., 2000). The first stage of sampling is the herd, and the second stage is

within-herd sampling.

The use of two-stage sampling has evolved to meet surveillance objectives for two

reasons. First, list frames of animals for randomized sample selection do not typically exist

at a regional or national level—but list frames of herds can be constructed and maintained

more readily. Secondly, the theory and application of within-herd sampling with imperfect

diagnostic tests is well developed (Martin et al., 1992; Donald, 1993; Donald et al., 1994;

Carpenter and Gardner, 1996; Jordan and McEwen, 1998; Cameron and Baldock, 1998a).

The within-herd sampling research has guided the approach to sampling to classify the

herd’s disease or infection status.

The herd-level sensitivity (HSe) and specificity (HSp) depend on individual-animal test

characteristics, sample size, within-herd prevalence, and the cutpoint number of reactors

(Martin et al., 1992; Cameron and Baldock, 1998a). The HSe and HSp become test

characteristics which can be applied at the herd level in a manner equivalent to animal-level

sensitivity (Se) and specificity (Sp) at the within-herd level (Cameron and Baldock,

1998b). The HSe and HSp usually are based on detecting infection if it is present above a

fixed level; the level is determined according to the epidemiology of the disease or specific

national or international rules.

The determination of HSe and HSp, however, becomes difficult if a minimum within-

herd prevalence cannot be assumed. When conducting a national survey to detect infection,

it might be more appropriate to assume a distribution for within-herd prevalence of

infection—especially as affected by clustering (Donald, 1993; Donald et al., 1994; Jordan

and McEwen, 1998). Donald (1993) suggested modeling the distribution of within-herd

prevalence as cluster-correlated binary responses to account for the nonindependence of

infection status of animals within herds. He related the intracluster correlation coefficient

to the beta-binomial distribution.

The U.S. National Animal Health Monitoring System (NAHMS) conducts national

surveys of animal health and production (Wineland and Dargatz, 1998). One of the goals of

NAHMS surveys is to estimate herd-level prevalences for various infections of interest in

cattle, sheep, swine, horses, and poultry. Unfortunately, two-stage sampling methods for

substantiating infection freedom are not directly applicable for estimating herd-level

prevalence. Substantiating infection freedom relies on detection of infection at both the

within-herd and herd levels. If the sample size needed for detecting infection at the herd

level (or animal level) is used to design a study where a precise infection estimate is

required, the resulting precision of the estimate might not be as precise as desired. The

increased precision needed for an estimate as compared to sampling for detection typically

will require a larger sample size.

Our objective was to develop two-stage sampling strategies for estimating herd-level

prevalence given imperfect diagnostic tests, different herd sizes, and clustering of

infection. We propose a sample-size formula for first-stage sampling and a Monte Carlo
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simulation model was used to investigate the effect of infection clustering and various

sampling strategies. Application of the approach is demonstrated with an example.

2. Materials and methods

2.1. Sample-size formula for herd-level estimation

Rogan and Gladen (1978) proposed a prevalence estimator that was adjusted for

imperfect test characteristics. Although their estimator was intended for individual-test

results, the estimator readily can be applied to herd-level estimation (Donald, 1993). The

herd-level estimate of infection is:

ûRG ¼ û þ HSp � 1

HSe þ HSp � 1

where ûRG denotes the adjusted herd-level prevalence and û denotes the apparent (i.e.

unadjusted) herd-level prevalence.

Donald (1993) showed the variance of the estimator, assuming fixed HSe and HSp, is:

varðûRGÞ ¼
varðûÞ

ðHSe þ HSp � 1Þ2

The variance formula can be used to derive a sample-size equation (Appendix A).

A sample-size estimate for the number of herds (nh) needed to achieve an acceptable error

limit (error limit denotes one-half the maximum width for the confidence interval for uRG)

with a specified confidence level (1 � a) is:

nh ¼ uð1 � uÞ
ðHSe þ HSp � 1Þ2

Za=2

error

� �2

where u is the proportion of infected herds.

2.2. Simulation model characteristics

We constructed a model to perform a Monte Carlo simulation of two-stage sampling

using a commercially available software package (@Risk, Palisade Corporation, Newfield,

NY). Inputs into the model include herd size, animal-level sensitivity (Se) and specificity

(Sp), animal-level prevalence, within-herd sample size, percent of herds that are negative,

and the cutpoint needed to designate a herd as positive. Herd size can be input as a fixed

size or it can follow a discrete distribution. Sensitivity and specificity can be input as point

estimates or can be selected randomly from beta-pert distributions (minimum, maximum,

and most likely values would be required) (Audige and Beckett, 1999). The within-herd

sample size can be a fixed number, a fixed percent of the herd size, or based on the discrete

distribution of herd size. The cutpoint is the number of test-positive results that are needed

to designate a herd as ‘‘infected.’’ The default cutpoint is one. These input parameters

are similar to those used by Audige and Beckett (1999) and Jordan and McEwen (1998).
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When fixed parameters are input, results from the model follow those reported by Cameron

and Baldock (1998b).

In each simulation iteration, the input parameters were used to create infected and

noninfected herds. The model used a beta-binomial distribution to assign the number of

infected animals to each herd. We chose the beta-binomial distribution because of its

appropriateness for modeling prevalence within herds and at the herd level as well as its

direct relationship to the intracluster correlation coefficient. The parameters for the beta-

binomial distribution (a and b) were determined by the specified animal-level prevalence

(p) and the intracluster correlation coefficient (r) using the following formulas (Bohning

and Greiner, 1998):

a ¼ p

r
�p

and

b ¼ 1 � p

r
þ p � 1

An issue with using the continuous beta-binomial distribution is the possibility of

‘‘infected’’ herds not having any infected animals. When selecting the herd-level

prevalence from the beta distribution, it is possible that a small prevalence level could be

chosen. If the prevalence level is sufficiently low, the resulting selection from the binomial

distribution used to determine the number of infected animals in the herd might be zero

with a relatively high probability. One solution to the problem is to force at least a single

infected animal into each ‘‘infected’’ herd, as was implemented by Donald et al. (1994).

This option necessitates modeling a free and an infected population. A second option is to

allow the simulation from the beta-binomial distribution to create both the infected and

noninfected herds. Both of these options are available in our model and in the model

developed by Jordan and McEwen (1998). We modeled infected and free populations when

we investigated the effect of infection clustering and various sampling strategies since we

could set the percent of herds that were not infected (c = 1 � u). We chose to use the

second option in the analysis of the real (observed field) data because we intended to

estimate the intracluster correlation for use in the model and we did not have an estimate of

the proportion of herds that were not infected.

After the number of infected animals in each herd was determined, the model used a

hypergeometric probability distribution (to model sampling without replacement) to

choose the number of infected animals in the sample from the herd randomly. The number

of noninfected animals in the sample was the difference between the sample size and the

number of infected animals in the sample. A binomial probability distribution (sampling

with replacement) was used, as an approximation to the hypergeometric probability

distribution, to estimate the number of infected animals in samples when the number of

infected animals in larger herds was large.

The model used a binomial probability distribution to simulate the diagnostic testing of

the sample of animals from the herd. Sensitivity and the number of infected animals

defined the binomial probability distribution which then was used to determine randomly
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the number of true test-positives and false test-negatives in each sample. Similarly, Sp was

used to determine the number of true test-negatives and false test-positives.

For each combination of within-herd sample size, sensitivity, specificity, cutpoint, and

intracluster correlation sampling and testing from 10,000 herds was simulated. The

simulated test results for each herd were cross-classified into the traditional 2 � 2 table

based on the true herd status and the results from the simulated herd-level sampling and

testing. This classification allowed for direct calculation of a point estimate of herd-level

sensitivity and specificity based on simulated sampling of 10,000 herds. We chose to

simulate 10,000 herds to allow for stable estimates of these characteristics.

2.3. Survey-model implementation

The model was used to investigate both hypothetical and real within-herd and herd-level

sampling-design strategies. First, the effects of within-herd sample size, intracluster

correlation coefficient, and cutpoint on HSe and HSp were assessed by simulation. For

these simulations, herd-size was 200, Se = 90%, Sp = 90%, and proportion of the herds that

was negative (c = 60%) was fixed. Six levels of intracluster correlation (0, 0.05, 0.1, 0.3,

0.5, and 0.8), two animal-level prevalences (1 and 20%), three within-herd sample sizes

(10, 20, and 30) and three cutpoints for the number of test-positive animals in the sample

needed to call a herd positive (1, 2, and 3) were used in the simulation. The impact of

imperfect specificity was assessed by repeating the simulation with Sp = 100%. The values

of the characteristics were chosen to allow for comparison of our model results to

previously published work (Donald et al., 1994) and to represent a spectrum of realistic

intracluster correlation coefficients.

Two-stage sampling then was simulated with the model for Se = 98%, Sp = 99%, and

animal-level prevalence = 20%. The intracluster correlation coefficient (r = 0.1) and the

proportion of herds that were negative (c = 60%) was fixed. The relatively high sensitivity,

specificity, and animal-level prevalence were selected to demonstrate the model under

relatively benign conditions; issues of inability to attain desired HSe and HSp were left for

other demonstrations. Two design scenarios were investigated to examine the changes in

design when targeted herd-level test characteristics are altered. In the first simulated design

scenario, within-herd sample sizes were determined separately for each herd-size category

(10–30, 31–50, 51–100, and 101–200) with the constraint that the cutpoint be fixed at one.

The within-herd sample size within each herd-size category was determined iteratively

with the goal of HSe >90% and the HSp >80%. In the second simulated design scenario,

the within-herd sample sizes were simulated again-but the cutpoint was allowed to vary.

Under this design scenario, the sample size was determined to obtain approximately HSe =

95% and HSp = 90%. After the within-herd sample sizes were determined, each of the

within-herd design scenarios was modeled for all herd-size categories to simulate two-

stage sampling from a population of herds. The proportion of herds taken from each herd-

size category was simulated in two ways for each of the within-herd sampling design

scenarios. In the first herd-level sampling simulation, the proportion of herds from each

herd-size category followed the proportion of herds in the population and ranged from 60%

in the small-herd category to 5% in the large-herd category. In the second herd-level

simulation, the proportion of herds sampled from each herd-size category was equivalent
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(25% from each category) to represent a naı̈ve design. The overall herd-level test

characteristics were calculated after completion of the simulation of two-stage sampling

from all herd sizes. These test characteristics represent the herd-level test characteristics

that would be expected under the two-stage survey designs.

The herd-level test characteristics from the four combinations of within-herd and herd-

level design scenarios were used as input into the sample-size equation to determine the

number of herds needed to estimate herd-level prevalence with 95% confidence and 10%

error limits. The confidence intervals were evaluated by simulating sampling of the

required number of herds under each of the four design scenarios 1000 times to estimate

accurately what proportion of the adjusted herd-level prevalence estimates fell within the

confidence interval (e.g., if the number of herds required to be 95% confident with an error

limit of 10% was 150, then 1000 simulations of sampling 150 herds were implemented).

The simulation using 1000 iterations of design scenarios was implemented to obtain

consistent results while maintaining a manageable output data set (1000 � 150). The

simulation results were exported to a statistical software package (SAS, SAS Institute,

Cary, NC) from which adjusted herd-level prevalence was calculated and descriptive

statistics were computed.

As the last part of the two-stage simulation, the total number of animals needed to be

sampled in each design scenario was calculated by multiplying the number of herds

needed in each herd-size category by the within-herd sampling requirements for that size

category. The number of herds sampled in each herd-size category depended on whether

the herd-level sampling was proportional to the population or set to equivalent

proportions.

2.4. Survey-model application

We used the model to demonstrate the design of surveys to estimate herd-level

prevalence for ovine progressive pneumonia (OPP) in sheep flocks. This example was

chosen because data were available from a recent NAHMS study for estimating the input

parameters of the model.

In the 2001 NAHMS sheep study, 21,525 sheep in 687 flocks were tested for OPP using

a competitive-inhibition enzyme-linked immunosorbent assay (cELISA). The Se and Sp of

the cELISA were estimated to be 98.6 and 96.9%, respectively (K. Marshall, personal

communication). The proportion of herds in each herd-size category followed the herd

allocation used by NAHMS. Only flocks with 20 or more animals were eligible for testing

in the NAHMS study. Weighted animal-level prevalence was estimated from the data and

adjusted using the Rogan–Gladen formula to obtain an animal-level prevalence estimate

for the model. The intracluster correlation coefficient was estimated using hierarchical

modeling software (MlwiN, version 1.1, Institute of Education, University of London,

London, UK).

For comparison, two sampling designs were constructed for OPP in sheep. The first

design restricted the cutpoint to a single positive for determining herd-level status. The

sample size was chosen to keep HSp about 70%. The second design allowed flexible

cutpoints for each herd-size category and attempted to keep HSe sensitivity about 80%.

The HSp and HSe goals were selected to allow for comparison of sampling two different
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within-herd sampling strategies—the former requires much fewer samples per herd than

the latter.

The percent of herds that was negative was not used as an input parameter into the

sheep-herd simulation. Instead, only r (calculated from the raw data) was used to

determine the distribution of within-herd prevalence. All sampling designs were

constructed to achieve an estimate of the herd-level prevalence with 95% confidence

and an error limit of 10%.

3. Results

3.1. Herd-level modeling results

At all sample sizes and values of r, when the animal-level test was imperfect, the effect

of increasing cutpoint was to decrease HSe and increase HSp (Tables 1 and 2). Increasing

sample size—regardless of cutpoint, animal-level prevalence, and r—increased HSe and

decreased HSp. When the animal-level prevalence was relatively low (p = 1%), HSe

increased with increasing r. When the within-herd prevalence was higher (p = 20%), the

HSe varied less but appeared to decrease in the middle of the range of r. Assuming perfect

animal-level test specificity substantially decreased HSe at both levels of animal-level

prevalence. Additionally, trends across the levels of r were consistent with the results

observed for imperfect specificity at the two animal-level prevalences examined.
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Table 1

Effect of within-herd infection correlation (r) with fixed herd size (N = 200) and animal-level prevalence

(p = 0.01), and variable animal-level specificity, within-herd sample size (n) and cut-off points (k) on herd-level

sensitivity and specificity

n k Herd-level sensitivity (%) Herd-level specificity (%)

r = 0 r = 0.05 r = 0.1 r = 0.3 r = 0.5 r = 0.8

Animal-test specificity = 0.9

10 1 68.9 72.3 73.0 81.2 85.7 92.8 35.0

2 29.8 34.7 38.1 47.6 57.1 69.7 73.7

3 9.3 11.4 13.4 24.9 36.2 64.2 93.0

20 1 89.9 91.8 92.1 93.3 97.3 96.4 12.2

2 66.1 70.6 72.3 81.2 85.5 85.8 39.4

3 37.0 43.3 48.2 56.0 63.8 75.0 67.6

30 1 96.2 98.1 99.0 97.7 98.6 100.0 4.2

2 85.1 88.8 91.0 89.5 92.8 94.3 18.4

3 65.1 69.8 71.9 77.0 82.6 90.2 41.4

Animal-test specificity = 1.0

10 1 10.3 19.5 26.5 34.1 46.9 65.3 100

20 1 19.7 31.2 40.1 45.7 59.9 76.9 100

30 1 27.0 39.8 51.4 55.6 64.7 78.9 100

Animal-test sensitivity = 0.9 and the proportion of negative herds = 0.6; 10,000 herds sampled.



3.2. Modeling two-stage sampling with a hypothetical population

In the sample design with a fixed cutpoint of one test-positive, the required within-herd

sample size ranged from 12 to 20 animals per herd (Table 3). With these sample sizes, HSe

and HSp were 91 and 81%, respectively, in all herd-size categories.

When the sample design allowed a cutpoint of one or more, the sample size was increased

in all herd-size categories except the smallest herd size (where allowing a higher cutpoint

made it impossible to attain an adequate HSe). In herds with >30 animals, all animals were

tested up to a maximum of 55. When the simulation was run with all herd-size categories at
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Table 2

Effect of within-herd infection correlation (r) with fixed herd size (N = 200) and animal-level prevalence (p = 0.2),

and variable animal-level specificity, sample size (n) and cut-off points (k) on herd-level sensitivity and specificity

n k Herd-level sensitivity (%) Herd-level specificity (%)

r = 0 r = 0.05 r = 0.1 r = 0.3 r = 0.5 r = 0.8

Animal-test specificity = 0.9

10 1 94.6 93.2 91.0 87.3 86.6 90.7 34.8

2 77.6 74.4 71.5 66.8 68.9 77.0 73.8

3 51.0 49.6 47.4 46.3 48.8 67.6 92.8

20 1 99.8 99.4 98.6 97.7 97.0 97.8 12.3

2 98.2 96.0 93.7 88.1 87.4 91.5 39.2

3 91.8 87.7 83.1 77.7 74.8 80.9 67.8

30 1 100.0 99.9 99.8 99.3 99.4 99.4 4.3

2 99.9 99.2 98.3 95.8 95.4 96.1 18.4

3 99.0 97.7 94.3 89.0 88.6 90.7 40.7

Animal-test specificity = 1.0

10 1 85.5 79.8 75.7 65.7 64.7 75.7 100.0

20 1 98.0 93.9 88.8 75.8 74.9 79.2 100.0

30 1 99.8 97.5 94.1 82.6 78.5 83.7 100.0

Animal-test sensitivity = 0.9 and the proportion of negative herds = 0.6; 10,000 herds sampled.

Table 3

Variation in herd-level sensitivity and specificity for herd-size categories under two herd-level design strategies:

with and without a fixed cutpoint of one

Herd size Percent of herds Cutpoint Within-herd sampling HSe (%) HSp (%)

Fixed cutpoint

10–30 60 1 All up to 12, then 13 93.3 87.7

31–50 20 1 15 up to 40, then 18 92.3 85.1

51–100 15 1 19 91.4 82.1

101–200 5 1 20 92.7 81.1

Variable cutpointa

10–30 60 1 All up to 12 then 13 93.3 87.7

31–50 20 2 Select all 95.8 93.6

51–100 15 1 All up to 55 then 55 97.1 89.7

101–200 5 1 55 95.8 89.4

Note: Se = 98%, Sp = 99%, p = 20%, C = 60%, r = 0.1.
a Cutpoint = 1 for herd size �30, then = 2 for herd sizes >30.



one time, the overall herd-level sensitivity and specificity (OHSe, OHSp) for the fixed

cutpoint design was approximately 93 and 86%, respectively, regardless of whether the herds

were sampled in proportion to the population or equal proportions were taken from each herd-

size category (Table 4). The OHSe and OHSP for the variable-cutpoint design were close to

95 and 90%, respectively (again, regardless of the herd-sampling protocol).

The number of herds required to attain the desired confidence in estimation was between

127 and 152 (Table 5). The number of herds required for the fixed-cutpoint sampling was

approximately 20 greater than was required by the variable-cutpoint sampling design.

Adjusted herd-level prevalence estimates obtained from the model fell within 10% of the

true prevalence at least 95% of the time—suggesting that the sample size was sufficient to

create the desired confidence interval.

The within-herd sampling designs resulted in substantially varying number of animals

that needed to be tested (Table 6). Although more herds were required for the fixed-

cutpoint design, the total number of animals was less than required for variable-cutpoint

designs. The variable-cutpoint design with equal proportions of samples taken from each

herd-size category had the largest total sample size requirement because of the greater

sample-size requirements in the three larger herd-size categories.

3.3. Modeling two-stage sampling: OPP example

Apparent (observed from the NAHMS study) within-flock prevalence of OPP in sheep

flocks was highly variable (Fig. 1) which resulted in an estimated r of 0.48. Six flock-size

categories were defined to provide flexibility for adjusting within-herd samples sizes.

Almost 50% of the flocks had 100 or fewer adult ewes (Table 7). When a cutpoint was

fixed, between 11 and 16 samples were required from each flock to keep HSp at

approximately 70%. The HSp was lower in the largest flock size to avoid HSe from

declining further. When the cutpoint was variable and the HSe objective was 80%, the HSp

was between 82.1 and 47.9% and sample sizes increased to a maximum of 90 in the largest

flocks. Overall herd-level test characteristics showed an improvement in all measures for

the variable-cutpoint design compared to the fixed-cutpoint design.

The improved test characteristics of the variable-cutpoint design for OPP resulted in a

smaller sample size of flocks than did the fixed-cutpoint design (Table 8). However, the
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Table 4

Overall herd-level sensitivity (OHSe) and specificity (OHSp) for herd-size categories under two herd-level design

strategies, with and without a fixed cutpoint of one, and two herd sampling strategies (proportion to the population

and equivalent proportion in each herd-size category)

Herd sampling strategy OHSe (%) OHSp

Fixed cutpoint

In proportion to population 93.4 85.8

25% of herds from each herd size category 93.0 85.8

Variable cutpointa

In proportion to population 95.1 90.7

25% of herds from each herd size category 94.3 90.1

Note: Se = 98%, Sp = 99%, p = 20%, C = 60%, r = 0.1.
a Cutpoint = 1 up to herd size of 30 then = 2 for the rest of the herd sizes.
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Table 5

Sample size needed to estimate herd-level prevalence (95% confident with an error limit of 10%), true prevalence, and simulated adjusted herd-level prevalence estimates

under two herd-level design strategies, with and without a fixed cutpoint of one, and two herd sampling strategies (proportion to the population and equivalent proportion in

each herd-size category)

Sample design and strategy Number of

herds required

Assumed true herd-level

prevalence (%)

Adjusted prevalencea (%)

5th percentile Mean prevalence 95th percentile

Cutpoint = 1 proportion to pop 150 38.1 28.6 36.6 44.8

Cutpoint = 1 (25% from each

herd-size category)

152 37.1 30.7 39.2 47.5

Variable cutpoint, proportion to pop 127 38.8 29.1 37.3 45.3

Variable cutpoint (25% from each

herd-size category)

131 37.1 30.4 38.7 42.5

a Distribution characteristics from 1000 simulations of sampling the specified number of herds.



increased number of animals that needed to be tested in each flock-size category resulted in

more than double the number of animal tests than did the fixed-cutpoint design.

4. Discussion

The design of two-stage sampling plans to estimate herd-level infection prevalence

when the diagnostic test is imperfect is dependent on a number of variables which can be

addressed in a model such as presented here. Often, a practical limitation of a modeling

approach is the lack of empirical information upon which to base assumptions (Jordan and

McEwen, 1998)—but the minimal requirements for this model are the distribution of herd

sizes, reliable estimates of Se and Sp, and some information on the potential distribution of

within-herd prevalence.
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Table 6

Estimated number of animals needed to estimate herd-level prevalence under two herd-level sampling strategies

(fixed cutpoint of one and variable cutpoint)

Herd size Mean number needed

to be sampled per herd

Number of herds

needed to be sampled

Number of

animals

Cutpoint = 1, sample relative to proportion in population

10–30 12.9 90 1161

31–50 16.5 30 495

51–100 19.0 22 399

101–200 20.0 8 160

Total 150 2215

Cutpoint = 1, sample equal proportion in each herd-size category

10–30 12.9 38 490

31–50 16.5 38 627

51–100 19.0 38 722

101–200 20.0 38 760

Total 152 2599

Variable cutpoint, sample relative to proportion in population

10–30 12.9 76 980

31–50 40.0 26 1040

51–100 54.7 19 1040

101–200 55.0 6 330

Total 127 3390

Variable cutpoint, sample equal proportion in each herd-size category

10-30 12.9 33 426

31–50 40.0 33 1320

51–100 54.7 33 1807

101–200 55.0 32 1760

Total 131 5313

Within each strategy, herds were sampled either in proportion to how they occurred in the population or by a fixed

25% within each herd category.



The intracluster correlation coefficient along with the animal-level prevalence can be

used to specify the distribution of within-herd prevalence in a population. Our results

indicate that herd-level test characteristics can be influenced by the level of clustering in

herds, especially at lower prevalences. McDermott and Schukken (1994) emphasized the
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Table 7

Herd-level sensitivity and specificity for herd-size categories under two herd-level design strategies (HSp = 70%

and HSe = 80%), for testing for ovine progressive pneumonia in sheep flocks (r = 0.48)a

Herd size Percent of

herds

Within-herd

sampling

HSe (%) HSp (%)

Fixed cutpoint = 1, keeping herd-level specificity approximately 70%

20–50 24 11 85.7 70.8

51–100 24 11 79.7 69.9

101–200 17 11 up to 150, then 12 75.3 69.3

201–500 15 12 73.1 69.7

501–2000 15 12 68.3 68.4

2001–5000 5 16 71.7 60.7

Sample of herds from population – – 76.3 70.0

Variable cutpointb, keep herd-level sensitivity approximately 80%

20–50 24 All up to 25, then 25 86.3 82.1

51–100 24 25 up to 80 then 30 81.5 79.9

101–200 17 30 up to 150, then 50 78.6 77.6

201–500 15 50 up to 250, then 60 78.9 72.9

501–2000 15 75 81.5 58.7

2001–5000 5 90 84.2 47.9

Sample of herds from population – – 81.4 77.6

Results are based on simulating 1000 herds in each herd-size category.
a The presence of a noninfected population of herds was not assumed for this simulation—the noninfected

herds were generated based on the intracluster correlation coefficient.
b Cutpoint = 2 up to herd sizes of 150 then increases to 3.

Fig. 1. Distribution of apparent within-flock prevalence of ovine progressive pneumonia in sheep flocks sampled

in the 2001 National Animal Health Monitoring System’s sheep study.



need to consider cluster effects in epidemiological studies of animal populations and used

the ANOVA method for estimating r. They also listed intracluster correlation coefficients

from a number of studies on various species and diseases. We chose to estimate r using a

hierarchical model. Estimates of r from actual test data will most likely be affected by test

sensitivity and specificity. However, the estimate provides some basis for designing

studies. Further research efforts are needed to develop adjusted estimates of r.

When no estimate of r is available, a qualitative assessment of r might be used. Ariwan

and Frerichs (1996) suggested qualitative levels of ‘‘low,’’ ‘‘medium,’’ and ‘‘high’’

intracluster correlation which they associated with values of the design effect: 2, 4, and 7,

respectively. The design effect is the variance of an estimated proportion obtained by a

cluster sample divided by the variance for a simple random sample (Dargatz and Hill,

1996). Ariwan and Frerich’s (1996) software converts the design effect into an estimate of

r using the following formula:

r ¼ deff � 1

n̄ � 1

where deff: design effect and n̄: average cluster (herd) size.

A common approach to determining whether a herd is ‘‘free’’ from infection is to design a

sampling protocol to detect a minimum within-herd prevalence (Garner et al., 1997; Cameron

and Baldock, 1998b; Cannon, 2001). For example, Garner et al. (1997) assumed that, in

infected swine herds, at least 25% of the finisher pigs would have antibodies to the porcine

reproductive-and-respiratory-syndrome virus. The minimal value can be considered to be the

lower tail of the distribution of within-herd prevalence in a population that is not free from

infection (such as would be expected in a herd-level infection-estimation problem).

Assuming a minimal value will result in a conservative estimate of HSe. If the distribution of
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Table 8

Sampling design for herd-level prevalence estimation of ovine progressive pneumonia for two herd-level sampling

strategies (fixed cutpoint of one and flexible cutpoint)

Herd size Mean number sampled per herd Number of herds Number of animals

Fixed cutpoint = 1, keeping herd-level specificity about 70%

20–50 11.0 106 1166

51–100 11.0 104 1144

101–200 11.5 74 851

201–500 12.0 67 804

501–2000 12.0 67 804

2001–5000 16.0 21 336

Total 439 5105

Variable cutpoint, keep herd-level sensitivity about 80%

20–50 24.5 66 1617

51–100 27.0 65 1755

101–200 40.0 46 1840

201–500 58.3 42 2450

501–2000 75.0 42 3150

2001–5000 90.0 13 1170

Total 274 11,982



the within-herd prevalence follows a ‘‘U’’ or ‘‘bathtub’’ shape (such as when r is relatively

high), the HSe estimate can be too liberal if the design is based on the average within-herd

prevalence. Thus, modeling the distribution of within-herd prevalence should provide a

more-accurate assessment of overall herd-level test characteristics for sample size

determination than does a detection level. Regardless of the approach, assumptions

regarding the distribution of within-herd prevalence will have an impact on the design.

Both the hypothetical and the OPP examples for designing studies to estimate herd-level

prevalence demonstrate that there are tradeoffs in choosing design strategies. The variable-

cutpoint design substantially improved the overall herd-level specificity—while

decreasing the number of herds that needed to be visited and increasing the number of

animals for testing by �30–50% (depending on the alternatives). For any study there are

numerous possible approaches to the study design. The intent of the alternatives that we

discussed in this paper were not to be comprehensive—but, rather, to demonstrate design

flexibility and the need to consider underlying assumptions and tradeoffs during the design

phase of a study to estimate herd-level prevalence. These tradeoffs give the designer or

decision maker an option for evaluating the costs and objectives of proposed studies.

Herd-level prevalence estimation can be adjusted using the Rogan–Gladen method or

through Bayesian techniques that are available (Enoe et al., 2000; Johnson et al., 2001).

The potential for misclassification must be considered when risk factors are being

evaluated. Greiner and Gardner (2000) discuss the misclassification at the individual-test

level when the risk factor and the diagnostic classification both are not readily observable

and surrogate measurements must be used. Unadjusted odds ratios systematically

underestimate the true odds ratio when misclassification is nondifferential. When

differential misclassification occurs, the odds ratio can be biased in either direction.

However, differential misclassification can be a product of the design. For example, in the

OPP variable-cutpoint design with the HSe close to 80%, the HSe was relatively stable by

design—but the HSp ranged between 48% for large herds and 82% for smaller herds.

Christensen and Gardner (2000) suggest that it is theoretically possible to adjust odds ratios

in a risk-factor study if HSe and HSp are known. Alternatively, when the primary objective

is to examine risk factors, some of the bias can be removed by adjusting the design to

minimize differential misclassification.

The OHSes in the hypothetical example were consistent whether the herds were sampled

in proportion to the population or in equal proportions across the herd-size categories. This

effect was due to the relatively homogenous HSes and HSps across the herd-size categories.

If HSe and HSp varied dramatically across the herd-size categories, then altering the

sampling proportions within herd-size categories could have an impact on the survey-level

test characteristics. The prevalence estimates used for the sample-size calculations were

slightly affected by the sampling protocol. This bias can be removed with a design-based

analysis that assigns sampling weights to observations (Dargatz and Hill, 1996).

The model developed here has many similarities to models developed by Audige and

Beckett (1999) and Jordan and McEwen (1998) but contains a combination of features not

available in either of the other models. Our model allows for the use of a beta-binomial

distribution for prevalence as does the Jordan model—but our model calculates the beta-

distribution parameters based on intracluster correlation coefficients and animal-level

prevalence. Additionally, several intracluster correlation coefficients can be evaluated
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simultaneously. Our model differs from Audige’s model in that our objective was to

determine HSe and HSp under the assumption of infection clustering for use in estimating

herd-level infection prevalence—but their objective was to assess freedom from infection.

Another difference between our model and Audige’s is our use of HSe and HSp to determine

the number of herds to sample. Audige and Beckett (1999) developed herd-level test

characteristics and then applied them to infected and noninfected herds in the second part of

their model to build likelihood ratios for freedom versus an alternatively specified prevalence.

Also, our model, unlike the other models, was developed to output results from the infection

and testing simulation of individual herds so that herd-level testing strategies could be

assessed readily.

Problems with using the beta-binomial distribution (of which the parameters are

estimated r and animal-level prevalence) to model clustered populations have been noted

by others. The probability of zero prevalence in the continuous distribution is zero—so that

noninfected herds are not probabilistically plausible. Donald (1993) and Donald et al.

(1994) recommended dividing the population under study into infected and noninfected

populations. Herd-level specificity applies only to noninfected herds and HSe applies to the

infected herds. A minimum of a single positive animal is forced into infected herds if the

modeled prevalence is too low to assign one based on binomial probabilities. Audige and

Beckett (1999) used a similar strategy while Jordan and McEwen (1998) offered an option

for forcing the minimum of a single positive into infected herds. Our model has the

flexibility to adopt either choice. We used the approach of dividing the population into

infected and noninfected for the hypothetical modeling and chose not to force a single

positive animal into ‘‘positive’’ herds. The modeling of OPP did not assume the presence of

an infected and noninfected population.
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Appendix A

The variance of the Rogan–Gladen estimator can be rewritten as follows (Donald,

1993):

varðûRGÞ ¼
varðûÞ

ðHSe þ HSp � 1Þ2
¼ ðûð1 � ûÞÞ=nh

ðHSe þ HSp � 1Þ2
¼ ûð1 � ûÞ

nhðHSe þ HSp � 1Þ2

where û: unadjusted estimate of herd-level prevalence, HSe: herd-level sensitivity, HSp:

herd-level specificity and nh: herd sample size.
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The variance estimate can be used to estimate the limits on error associated with an

estimate. The usual formula for the limit on error for a sample proportion, u, is:

error � Zc

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
uð1 � uÞ

n

r

where Zc is the value from standard normal distribution corresponding to confidence level

c. Thus, the limit in error of the Rogan–Gladen estimator provides the following formula:

error � Za=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
uð1 � uÞ

nhðHSe þ HSp � 1Þ2

s

Solving for nh results in the following formula for estimating herd-level sample size:

nh ¼ uð1 � uÞ
ðHSe þ HSp � 1Þ2

Za=2

error

� �2
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